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, (a,b,c,d complex) 8 real parameters

H|y)= E|y). E=%(a+dir\/(a—d)2+4bc)

nonhermitian degeneracies (NHDs) where a-d=+2ibc

similarly

— IV (r)+V(r)y(r)=Ey(r), V(r)complex and with no symmetry

= all £ complex

but if H has PT symmetry, e.g. V(r)=V*(-r), then
some, or in special cases all, energies can be real
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H, .=H, ., ie. H:( ] 4 real parameters

secular equation E*—2ERea+|d —|b|" =0 is real!

eigenvalues real or in complex-conjugate pairs

E= Rea-l-\/‘b‘ (Ima)”  NHDs where Ibl=ITmal



general proof that when H has PT a basis can be
found in which the secular equation is real



general proof that when H has PT a basis can be
found in which the secular equation is real

PT is an antiunitary operator A



general proof that when H has PT a basis can be
found in which the secular equation is real

PT Is an antiunitary operatorA AH = HA



general proof that when H has PT a basis can be
found in which the secular equation is real

PT Is an antiunitary operatorA AH = HA

general definition (A¢|Aw)=(¢|y)*



general proof that when H has PT a basis can be
found in which the secular equation is real

PT Is an antiunitary operatorA AH = HA

general definition (A¢|Aw)=(¢|y)*

A = unitary X complex conjugation

for A=PT, (unitary=x = —x), (complex conjugation=T7")




general proof that when H has PT a basis can be
found in which the secular equation is real

PT Is an antiunitary operatorA AH = HA

general definition (A¢|Aw)=(¢|y)*

A = unitary X complex conjugation

for A=PT, (unitary=x = —x), (complex conjugation=T7")

in addition, A=PT satisfies A” =1



general proof that when H has PT a basis can be
found in which the secular equation is real

PT Is an antiunitary operatorA AH = HA

general definition (A¢|Aw)=(¢|y)*

A = unitary X complex conjugation

for A=PT, (unitary=x = —x), (complex conjugation=T7")

in addition, A=PT satisfies A” =1
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create an ‘A-adapted’ basis:

‘nA>E‘n>+A‘n> , satisfying A|n,)=|n,)

(n,|H|m,)=(An,|AHm,)™ (definition of antiunitarity).
=(An,|H|Am,) * (antiunitarity symmetry of H )
=(n,|H|m,)" (A —adapted basis).
—> matrix elements real

—> secular equation det
IS real

(E-H)=0

URUT

—> energy levels real or complex-conjugate pairs
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importance of NH,
contrasting views

1. NH not fundamental,
merely describing decay
(or, more recently, gain)
associated with freedoms
we cannot measure or
choose to ignore

2. NH more fundamental than H, which perpetrates
the fiction of the isolated system, ignoring the fact
that any probing of a system involves coupling it
with something else
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for H, traditional view: reflects the fundamental
requirement that probability must be conserved for
an isolated system, - unitarity

recent counter-view: for those PT systems with real
energies (i.e. not complex-conjugate pairs), can
define a scalar product such that evolution is
unitary, suggesting PT as more fundamental than H

counter-counter view 1. many quantum systems
with H have neither P (honsymmetric quantum
dots) nor T (particles in magnetic fields)

counter-counter view 2: examples showing that
the new PT scalar product does not represent
physics - probability not conserved
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diffraction of waves: light, electrons, atoms...
by waves: sound, crystals, light...

e l25l’
U(x)
| ;«‘”,‘ao,z

-{V'a-ﬂz wave (in scaled variables)

2 Bragg-diffracted
beam intensities la,/?

1 *la-ﬂ“
el )= X an(2expli(nsin)
00— _
Z— periodic potential (refractive index)? u(x)

PT symmetric if #(x)=u,(x)+x,(x)

i, (x) (hermitian) real even

i, (x) (antihermitian) imaginary odd
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total emergent intensity (current, probability, Poynting)
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e |a5l° 1(2)=Y

uU(x) ;'uz,lﬂ -
< 40" s this conserved, i.e. is

S—
the PT crystal transparent
(physical unitarity)?

No!
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u(x)= o, 2, cosnx+2iY 1, sinnx
n=1 n=1

beam amplitude
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paraxial wave equation 0.y =—0.w + u(x)y
_2 U exp(inx) i (1, + . )exp(inx)
for PT u,= real, u,, =pn, ,, U, =—H,,
u(x)=pu,, + 22 I cOSnx+ 2ii,um Sin nx
pr pr
beam amplitude

evolution i0.a,(z2)=(n+e,)a,(2)+ Y w_a,(z). a,(0)=5,,

nm=—oo

—> 0J.I(z)=2Im ), > u._,.a:a, =0 in hermitian case,
e otherwise not



PT crystals not transparent, i.e. PT = unitarity



PT crystals not transparent, i.e. PT = unitarity

IS anything conserved?



PT crystals not transparent, i.e. PT = unitarity
IS anything conserved?

more general intensity sum rules

(e o]

S=) S,

Nn=—co

a, (z)‘2 =1, S real




PT crystals not transparent, i.e. PT = unitarity
IS anything conserved?

more general intensity sum rules

S = iSn

Nn=—co

a, (z)‘2 =1, S real

| pure antihermitian PT

example 1 u(x)=2i2tam sini(2n+ s odd wrt x=0 and x=x



PT crystals not transparent, i.e. PT = unitarity
IS anything conserved?

more general intensity sum rules

S = iSn

Nn=—co

a, (z)‘2 =1, S real

| pure antihermitian PT

x=2ioo 5 Sinq(2n+1)x
example 1 u(x) Zu 1(2n+1) odd wrt x=0 and x=x

alternating-sign ¢ _ i(—l)”\a (2 =1
sum rule =



PT crystals not transparent, i.e. PT = unitarity
IS anything conserved?

more general intensity sum rules

S = iSn

Nn=—co

a, (z)‘2 =1, S real

| pure antihermitian PT

x=2ioo 5 Sinq(2n+1)x
example 1 u(x) Zu 1(2n+1) odd wrt x=0 and x=x

alternating-sign ¢ _ i(—l)”\a (2 =1
sum rule =

1(2)= 3 Ja,(f =142%

J1=—o0 J1—=—o00

not transparent,

">
“2"“(2)‘ gain dominates loss
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example 2, interpolating between sum rules

t(x)=p, exp(ix)+ u_ exp(-ix) =2y, cosx+ inx

(pure trigonometric)

iO,gain N 0<x<m, lossin —-t<x<0

sum rule 2(““_““]

2
alz) =1
/’th + tLLal ( )‘

Nn=—oo

=0, 1(z)= 3 Ja,(zf =1
limits - |
1, =0, S(2)= 3 (<1)]a, (2 =1

n=—oo
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example 3: two-beam case, Luh‘ <<, ‘,ua‘ <<l

iIntensity depends on
1 g la, 12 balance of u, and u.
- |
— [(e)=1+ 22t
l %}lz JLLh +aua
— 058 if % <0 and [ <[]
— B
7— gain otherwise

6, =—++0: deviation from Bragg angle
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1 as z Increases,
| state rotates to
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| eigenstate of H

PoI(z)=1+222p, (1, + 1)
t always gain

é ghost of departed
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gain and loss symmetrical in u(x), but net gain
iIn emergent light

v (x.2) =1+22°(y, +ua)(uh L, —u - coszx)

+2Z(:uh T ua

breaks symmetry between gain and loss

2 |
v | wave
gain concentrated In

gain region

loss
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optical implication of single eigenvector at NHD

in optics NHD= "singular axis’ in direction space
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in optics, 2x2 dielectric matrix depending on
direction, eigenvectors=polarization states

usually, two polarizations can propagate through an
absorbing biaxially anisotropic crystal

but at a singular axis (NHD), there is only one

what happens if a crystal is illuminated along a
singular axis, with a beam of the orthogonal
polarization — the one that doesn’t propagate?

Voigt 1908: the beam will be totally reflected

Pancharatnam 1955: wrong! - the polarization will
slowly rotate into the one that does propagate
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overall decay because crystal is absorbing: NH
not PT, but the same degeneracy phenomenon

orthogonal polarization that
incident propagates
polarization
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Pancharatnam’s lossy crystal is an example of ‘NH
essentially PT’, i.e. eigenvalues on a line parallel to
the real axis: shifted to complex by absorption

another example: Zeilinger et al’'s (1996)
atoms diffracted by light

with zero detuning, optical potentlal
seen by atoms is proportional to icos” x

icos’x=+i+4isin2§ (E=x+1m)

- )\

nonuniform uniform PT, I.e. gain
loss loss balancing loss
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