NH: PT's big brother

Michael Berry University of Bristol

http://michaelberryphysics.wordpress.com
for a general nonhermitian (NH) operator $H \neq H^{\dagger}$, eigenvalues are usually all complex
for a general nonhermitian (NH) operator $H \neq H^{\dagger}$, eigenvalues are usually all complex

$$
\text { e.g. } \boldsymbol{H}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad(a, b, c, d \text { complex }) 8 \text { real parameters }
$$

for a general nonhermitian (NH) operator $H \neq H^{\dagger}$, eigenvalues are usually all complex

$$
\text { e.g. } \boldsymbol{H}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad(a, b, c, d \text { complex }) 8 \text { real parameters }
$$

$$
\boldsymbol{H}|\psi\rangle=E|\psi\rangle, \quad E=\frac{1}{2}\left(a+d \pm \sqrt{(a-d)^{2}+4 b c}\right)
$$

nonhermitian degeneracies (NHDs) where $a-d= \pm 2 \mathrm{i} b c$
for a general nonhermitian (NH) operator $H \neq H^{\dagger}$, eigenvalues are usually all complex

$$
\text { e.g. } \boldsymbol{H}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad(a, b, c, d \text { complex }) 8 \text { real parameters }
$$

$$
\boldsymbol{H}|\psi\rangle=E|\psi\rangle, \quad E=\frac{1}{2}\left(a+d \pm \sqrt{(a-d)^{2}+4 b c}\right)
$$

nonhermitian degeneracies (NHDs) where $a-d= \pm 2 \mathrm{i} b c$ similarly
$-\frac{1}{2} \nabla^{2} \psi(\boldsymbol{r})+V(\boldsymbol{r}) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r}), \quad V(\boldsymbol{r})$ complex and with no symmetry \Rightarrow all E complex
for a general nonhermitian (NH) operator $H \neq H^{\dagger}$, eigenvalues are usually all complex
e.g. $\boldsymbol{H}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \quad(a, b, c, d$ complex $) 8$ real parameters

$$
\boldsymbol{H}|\psi\rangle=E|\psi\rangle, \quad E=\frac{1}{2}\left(a+d \pm \sqrt{(a-d)^{2}+4 b c}\right)
$$

nonhermitian degeneracies (NHDs) where $a-d= \pm 2 \mathrm{i} b c$ similarly
$-\frac{1}{2} \nabla^{2} \psi(\boldsymbol{r})+V(\boldsymbol{r}) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r}), \quad V(\boldsymbol{r})$ complex and with no symmetry \Rightarrow all E complex
but if \boldsymbol{H} has $P T$ symmetry, e.g. $V(\boldsymbol{r})=V^{*}(-\boldsymbol{r})$, then some, or in special cases all, energies can be real

$$
H(x)=-\partial_{x}^{2}+x^{4}+\mathrm{i} A x=H(-x)^{*}=P T H \neq H^{\dagger}
$$

$$
H(x)=-\partial_{x}^{2}+x^{4}+\mathrm{i} A x=H(-x)^{*}=P T H \neq H^{\dagger}
$$

real energies plotted

$$
H(x)=-\partial_{x}^{2}+x^{4}+\mathrm{i} A x=H(-x)^{*}=P T H \neq H^{\dagger}
$$

real energies plotted

NHDs = exceptional points (EPs)
different from hermitian case

$$
H(x)=-\partial_{x}^{2}+x^{4}+\mathrm{i} A x=H(-x)^{*}=P T H \neq H^{\dagger}
$$

real energies
plotted

NHDs = exceptional points (EPs)
different from hermitian case
all energies real for $|A|<3.169$

$$
H(x)=-\partial_{x}^{2}+x^{4}+\mathrm{i} A x=H(-x)^{*}=P T H \neq H^{\dagger}
$$

all energies real for $|A|<3.169$

real

 energiesplotted

NHDs = exceptional points (EPs)
different from hermitian case
why are any energies real?
2×2 case: two points on x axis

$$
(i, j)=-1 \quad(i, j)=+1
$$

2×2 case: two points on x axis

$$
\begin{aligned}
& (i, j)=-1 \quad(i, j)=+1 \\
& (P T \boldsymbol{H})_{i, j}=H_{-i,-j}^{*}
\end{aligned}
$$

$2 x 2$ case: two points on x axis

$$
\begin{gathered}
(i, j)=-1 \quad(i, j)=+1 \\
(P T H)_{i, j}=H_{-i,-j}^{*} \\
H_{-i,-j}^{*}=H_{i, j} \text {, i.e. } \boldsymbol{H}=\left(\begin{array}{cc}
a & b \\
b^{*} & a^{*}
\end{array}\right) 4 \text { real parameters }
\end{gathered}
$$

2×2 case: two points on x axis

$$
\begin{gathered}
(i, j)=-1 \quad(i, j)=+1 \\
(P T H)_{i, j}=H_{-i,-j}^{*} \\
H_{-i,-j}^{*}=H_{i, j}, \text { i.e. } \boldsymbol{H}=\left(\begin{array}{cc}
a & b \\
b^{*} & a^{*}
\end{array}\right) 4 \text { real parameters }
\end{gathered}
$$

secular equation $E^{2}-2 E \operatorname{Re} a+|a|^{2}-|b|^{2}=0$ is real!
2×2 case: two points on x axis

$$
\begin{gathered}
(i, j)=-1 \quad(i, j)=+1 \\
(P T \boldsymbol{H})_{i, j}=H_{-i,-j}^{*} \\
H_{-i,-j}^{*}=H_{i, j}, \text { i.e. } \boldsymbol{H}=\left(\begin{array}{cc}
a & b \\
b^{*} & a^{*}
\end{array}\right) 4 \text { real parameters }
\end{gathered}
$$

secular equation $E^{2}-2 E \operatorname{Re} a+|a|^{2}-|b|^{2}=0$ is real!
eigenvalues real or in complex-conjugate pairs
2×2 case: two points on x axis

$$
(i, j)=-1 \quad(i, j)=+1
$$

$$
(P T \boldsymbol{H})_{i, j}=H_{-i,-j}^{*}
$$

$$
H_{-i, j}^{*}=H_{i, j} \text {, i.e. } \boldsymbol{H}=\left(\begin{array}{cc}
a & b \\
b^{*} & a^{*}
\end{array}\right) 4 \text { real parameters }
$$

secular equation $E^{2}-2 E \operatorname{Re} a+|a|^{2}-|b|^{2}=0$ is real!
eigenvalues real or in complex-conjugate pairs

$$
E=\operatorname{Re} a \pm \sqrt{|b|^{2}-(\operatorname{Im} a)^{2}} \quad \text { NHDs where }|b|=|\operatorname{Im} a|
$$

general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator \boldsymbol{A}
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator $\boldsymbol{A} \quad \boldsymbol{A H}=\boldsymbol{H} \boldsymbol{A}$
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator $\boldsymbol{A} \quad \boldsymbol{A H}=\boldsymbol{H} \boldsymbol{A}$
general definition $\langle\boldsymbol{A} \phi \mid \boldsymbol{A} \psi\rangle=\langle\phi \mid \psi\rangle^{*}$
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator $\boldsymbol{A} \quad \boldsymbol{A H}=\boldsymbol{H} \boldsymbol{A}$
general definition $\langle\boldsymbol{A} \phi \mid \boldsymbol{A} \psi\rangle=\langle\phi \mid \psi\rangle^{*}$

$$
\boldsymbol{A}=\text { unitary } \times \text { complex conjugation }
$$

for $A=P T$, (unitary $=x \Rightarrow-x$), (complex conjugation $=T)$
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator $\boldsymbol{A} \quad \boldsymbol{A H}=\boldsymbol{H} \boldsymbol{A}$
general definition $\langle\boldsymbol{A} \phi \mid \boldsymbol{A} \psi\rangle=\langle\phi \mid \psi\rangle^{*}$

$$
A=\text { unitary } \times \text { complex conjugation }
$$

for $A=P T$, (unitary $=x \Rightarrow-x$), (complex conjugation $=T)$
in addition, $A=P T$ satisfies $A^{2}=1$
general proof that when \boldsymbol{H} has $P T$ a basis can be found in which the secular equation is real
$P T$ is an antiunitary operator $\boldsymbol{A} \quad \boldsymbol{A H}=\boldsymbol{H} \boldsymbol{A}$
general definition $\langle\boldsymbol{A} \phi \mid \boldsymbol{A} \psi\rangle=\langle\phi \mid \psi\rangle^{*}$

$$
\boldsymbol{A}=\text { unitary } \times \text { complex conjugation }
$$

for $A=P T$, (unitary $=x \Rightarrow-x)$, (complex conjugation $=T)$
in addition, $A=P T$ satisfies $A^{2}=1$
start from orthonormal basis of states
$|n\rangle$

create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+\boldsymbol{A}|n\rangle, \text { satisfying } \quad \boldsymbol{A}\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+\boldsymbol{A}|n\rangle, \text { satisfying } \quad \boldsymbol{A}\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

$$
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle=\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \quad \text { (definition of antiunitarity). }
$$

create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+A|n\rangle, \text { satisfying } \quad A\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

$$
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle=\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \quad \text { (definition of antiunitarity). }
$$

$$
\left.=\left\langle\boldsymbol{A} n_{A}\right| \boldsymbol{H}\left|\boldsymbol{A} m_{A}\right\rangle^{*} \text { (antiunitarity symmetry of } \boldsymbol{H}\right)
$$

create an ' \boldsymbol{A}-adapted' basis:

$$
\begin{aligned}
&\left|n_{A}\right\rangle \equiv|n\rangle+\boldsymbol{A}|n\rangle, \text { satisfying } \boldsymbol{A}\left|n_{A}\right\rangle=\left|n_{A}\right\rangle \\
& \begin{aligned}
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle & =\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \\
& \text { (definition of antiunitarity) } \\
& =\left\langle\boldsymbol{A} n_{A}\right| \boldsymbol{H}\left|\boldsymbol{A} m_{A}\right\rangle^{*} \\
& \text { (antiunitarity symmetry of } \boldsymbol{H}) \\
& =\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle^{*} \quad(\boldsymbol{A} \text { - adapted basis) } .
\end{aligned}
\end{aligned}
$$

create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+\boldsymbol{A}|n\rangle \text {, satisfying } \quad \boldsymbol{A}\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

$$
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle=\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \quad \text { (definition of antiunitarity). }
$$

$$
\begin{aligned}
& \left.=\left\langle\boldsymbol{A} n_{A}\right| \boldsymbol{H}\left|\boldsymbol{A} m_{A}\right\rangle^{*} \quad \text { (antiunitarity symmetry of } \boldsymbol{H}\right) \\
& =\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle^{*} \quad(\boldsymbol{A} \text { - adapted basis) } .
\end{aligned}
$$

\longrightarrow matrix elements real
create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+A|n\rangle, \text { satisfying } \quad A\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

$$
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle=\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \quad \text { (definition of antiunitarity). }
$$

$$
\left.=\left\langle\boldsymbol{A} n_{A}\right| \boldsymbol{H}\left|\boldsymbol{A} m_{A}\right\rangle^{*} \text { (antiunitarity symmetry of } \boldsymbol{H}\right)
$$

$$
=\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle^{*} \quad(\boldsymbol{A}-\text { adapted basis }) .
$$

\longrightarrow matrix elements real
\longrightarrow secular equation $\operatorname{det}_{m_{A}, n_{A}}(E-\boldsymbol{H})=0$ is real

create an ' \boldsymbol{A}-adapted' basis:

$$
\left|n_{A}\right\rangle \equiv|n\rangle+A|n\rangle, \text { satisfying } \quad A\left|n_{A}\right\rangle=\left|n_{A}\right\rangle
$$

$$
\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle=\left\langle\boldsymbol{A} n_{A} \mid \boldsymbol{A} \boldsymbol{H} m_{A}\right\rangle^{*} \quad \text { (definition of antiunitarity). }
$$

$$
\begin{aligned}
& =\left\langle\boldsymbol{A} n_{A}\right| \boldsymbol{H}\left|\boldsymbol{A} m_{A}\right\rangle^{*} \quad(\text { antiunitarity symmetry of } \boldsymbol{H}) \\
& =\left\langle n_{A}\right| \boldsymbol{H}\left|m_{A}\right\rangle^{*} \quad(\boldsymbol{A} \text { - adapted basis }) .
\end{aligned}
$$

\longrightarrow matrix elements real
\longrightarrow secular equation $\operatorname{det}_{m_{A}, n_{A}}(E-\boldsymbol{H})=0$ is real
\longrightarrow energy levels real or complex-conjugate pairs
the world of operators
the world of operators

the world of operators

the world of operators

the world of operators

importance of NH , contrasting views

the world of operators

importance of NH , contrasting views

1. NH not fundamental, merely describing decay (or, more recently, gain) associated with freedoms we cannot measure or choose to ignore
the world of operators

importance of NH , contrasting views
2. NH not fundamental, merely describing decay (or, more recently, gain) associated with freedoms we cannot measure or choose to ignore
3. NH more fundamental than H , which perpetrates the fiction of the isolated system, ignoring the fact that any probing of a system involves coupling it with something else

for H , traditional view: reflects the fundamental

 requirement that probability must be conserved for an isolated system, - unitarityfor H , traditional view: reflects the fundamental requirement that probability must be conserved for an isolated system, - unitarity
recent counter-view: for those PT systems with real energies (i.e. not complex-conjugate pairs), can define a scalar product such that evolution is unitary, suggesting PT as more fundamental than H
for H , traditional view: reflects the fundamental requirement that probability must be conserved for an isolated system, - unitarity
recent counter-view: for those PT systems with real energies (i.e. not complex-conjugate pairs), can define a scalar product such that evolution is unitary, suggesting PT as more fundamental than H
counter-counter view 1: many quantum systems with H have neither P (nonsymmetric quantum dots) nor T (particles in magnetic fields)
for H , traditional view: reflects the fundamental requirement that probability must be conserved for an isolated system, - unitarity
recent counter-view: for those PT systems with real energies (i.e. not complex-conjugate pairs), can define a scalar product such that evolution is unitary, suggesting PT as more fundamental than H
counter-counter view 1: many quantum systems with H have neither P (nonsymmetric quantum dots) nor T (particles in magnetic fields)
counter-counter view 2: examples showing that the new PT scalar product does not represent physics - probability not conserved
diffraction of waves: light, electrons, atoms... by waves: sound, crystals, light...
diffraction of waves: light, electrons, atoms... by waves: sound, crystals, light...

Bragg-diffracted beam intensities $\left|a_{n}\right|^{2}$

$z \longrightarrow$ periodic potential (refractive index) ${ }^{2} \mu(x)$
diffraction of waves: light, electrons, atoms... by waves: sound, crystals, light...

$z \longrightarrow$ periodic potential (refractive index) ${ }^{2} \mu(x)$
diffraction of waves: light, electrons, atoms... by waves: sound, crystals, light...

Bragg-diffracted

 beam intensities $\left|a_{n}\right|^{2}$wave (in scaled variables)

$$
\psi(x, z)=\sum_{n=-\infty}^{\infty} a_{n}(z) \exp \left(\mathrm{i}\left(n+\sin \theta_{0}\right) x\right)
$$

$z \longrightarrow$ periodic potential (refractive index) ${ }^{2} \mu(x)$
PT symmetric if
$\mu(x)=\mu_{\mathrm{h}}(x)+\mu_{\mathrm{a}}(x)$
$\mu_{\mathrm{h}}(x)$ (hermitian) real even
$\mu_{\mathrm{a}}(x)$ (antihermitian) imaginary odd

total emergent intensity (current, probability, Poynting)

total emergent intensity (current, probability, Poynting)

$$
I(z)=\sum_{-\infty}^{\infty}\left|a_{n}(z)\right|^{2}
$$

total emergent intensity (current, probability, Poynting)

$$
I(z)=\sum_{-\infty}^{\infty}\left|a_{n}(z)\right|^{2}
$$

is this conserved, i.e. is the PT crystal transparent (physical unitarity)?

total emergent intensity (current, probability, Poynting)

$$
I(z)=\sum_{-\infty}^{\infty}\left|a_{n}(z)\right|^{2}
$$

is this conserved, i.e. is the PT crystal transparent (physical unitarity)?

No!

J Phys A 41 (2008) 244007 (7pp)

Optical lattices with PT symmetry are not transparent

M V Berry

H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 1 April 2008

Published 3 June 2008
paraxial wave equation $\mathrm{i}_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$
paraxial wave equation $\mathrm{i}_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$

$$
\mu(x)=\sum_{n=\infty}^{\infty} \mu_{n} \exp (\mathrm{inx})=\sum_{n=\infty}^{\infty}\left(\mu_{m+}+\mu_{n a}\right) \exp (\mathrm{inx})
$$

paraxial wave equation $\mathrm{i} \partial_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$

$$
\mu(x)=\sum_{n=-\infty}^{\infty} \mu_{n} \exp (\mathrm{i} n x)=\sum_{n=-\infty}^{\infty}\left(\mu_{n h}+\mu_{n a}\right) \exp (\mathrm{i} n x)
$$

for PT $\mu_{n}=$ real, $\mu_{\mathrm{h} n}=\mu_{\mathrm{h},-n}, \mu_{\mathrm{a} n}=-\mu_{\mathrm{a},-n}$

$$
\mu(x)=\mu_{0 h}+2 \sum_{n=1}^{\infty} \mu_{n h} \cos n x+2 i \sum_{n=1}^{\infty} \mu_{n a} \sin n x
$$

paraxial wave equation $\mathrm{i}_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$

$$
\mu(x)=\sum_{n=-\infty}^{\infty} \mu_{n} \exp (\mathrm{i} n x)=\sum_{n=-\infty}^{\infty}\left(\mu_{n h}+\mu_{n a}\right) \exp (\mathrm{i} n x)
$$

$$
\begin{aligned}
& \text { for PT } \mu_{n}=\text { real, } \mu_{\mathrm{hn}}=\mu_{\mathrm{h}, n}, \mu_{\mathrm{a} n}=-\mu_{\mathrm{a} \cdot n} \\
& \mu(x)=\mu_{\mathrm{oh}}+2 \sum_{n=1}^{\infty} \mu_{n h} \cos n x+2 \mathrm{i} \sum_{n=1}^{\infty} \mu_{n a} \sin n x
\end{aligned}
$$

beam amplitude evolution

$$
\mathrm{i} \partial_{z} a_{n}(z)=\left(n+\alpha_{0}\right)^{2} a_{n}(z)+\sum_{m=-\infty}^{\infty} \mu_{n-m} a_{m}(z), \quad a_{n}(0)=\delta_{n, 0}
$$

paraxial wave equation $\mathrm{i}_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$

$$
\mu(x)=\sum_{n=-\infty}^{\infty} \mu_{n} \exp (\mathrm{i} n x)=\sum_{n=-\infty}^{\infty}\left(\mu_{n h}+\mu_{n a}\right) \exp (\mathrm{i} n x)
$$

for PT $\mu_{n}=$ real, $\mu_{\mathrm{h} n}=\mu_{\mathrm{h}, n}, \mu_{\mathrm{a} n}=-\mu_{\mathrm{a},-n}$

$$
\mu(x)=\mu_{0 h}+2 \sum_{n=1}^{\infty} \mu_{n h} \cos n x+2 i \sum_{n=1}^{\infty} \mu_{n a} \sin n x
$$

beam amplitude evolution

$$
\mathrm{i} \partial_{z} a_{n}(z)=\left(n+\alpha_{0}\right)^{2} a_{n}(z)+\sum_{m=-\infty}^{\infty} \mu_{n-m} a_{m}(z), \quad a_{n}(0)=\delta_{n, 0}
$$

$$
\partial_{z} I(z)=2 \operatorname{Im} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mu_{n-m a} a_{n}^{*} a_{m}
$$

paraxial wave equation $\mathrm{i}_{z} \psi=-\partial_{x}^{2} \psi+\mu(x) \psi$

$$
\mu(x)=\sum_{n=-\infty}^{\infty} \mu_{n} \exp (\mathrm{i} n x)=\sum_{n=-\infty}^{\infty}\left(\mu_{n h}+\mu_{n a}\right) \exp (\mathrm{i} n x)
$$

$$
\text { for PT } \mu_{n}=\text { real, } \mu_{\mathrm{h} n}=\mu_{\mathrm{h}, n}, \mu_{\mathrm{a} n}=-\mu_{\mathrm{a},-n}
$$

$$
\mu(x)=\mu_{0 h}+2 \sum_{n=1}^{\infty} \mu_{n h} \cos n x+2 \mathrm{i} \sum_{n=1}^{\infty} \mu_{n a} \sin n x
$$

beam amplitude evolution

$$
\dot{1}_{z} a_{n}(z)=\left(n+\alpha_{0}\right)^{2} a_{n}(z)+\sum_{m=-\infty}^{\infty} \mu_{n-m}^{\infty} a_{m}(z), \quad a_{n}(0)=\mathcal{O}_{n, 0}
$$

$\partial_{z} I(2)=21 m_{n=-\infty}^{\infty} \mu_{m=-\infty}^{\infty} \mu_{n-m, a}^{\infty} a_{n}^{*} a_{m}=0$

PT crystals not transparent, i.e.PT $\rightarrow \boldsymbol{\rightarrow}$ unitarity

PT crystals not transparent, i.e. PT $\rightarrow \rightarrow$ unitarity is anything conserved?

PT crystals not transparent, i.e. PT $\rightarrow \rightarrow$ unitarity is anything conserved?
more general intensity sum rules

$$
S \equiv \sum_{n=-\infty}^{\infty} S_{n}\left|a_{n}(z)\right|^{2}=1, \quad S_{n} \text { real }
$$

PT crystals not transparent, i.e. PT $\rightarrow \rightarrow$ unitarity is anything conserved?
more general intensity sum rules

$$
S \equiv \sum_{n=-\infty}^{\infty} S_{n}\left|a_{n}(z)\right|^{2}=1, \quad S_{n} \text { real }
$$

example $1 \mu(x)=2 i \sum_{n=0}^{\infty} \mu_{\Delta 2 n+1} \sin \{(2 n+1) x\} \quad$ pure antihermitian PT

PT crystals not transparent, i.e. PT $\rightarrow \rightarrow$ unitarity is anything conserved?
more general intensity sum rules

$$
S \equiv \sum_{n=-\infty}^{\infty} S_{n}\left|a_{n}(z)\right|^{2}=1, \quad S_{n} \text { real }
$$

example $1 \mu(x)=2 i \sum_{m=0}^{\infty} \mu_{22 n+1} \sin \{(2 n+1) x\}$ pure antihermitian PT
alternating-sign

$$
S \equiv \sum_{n=\infty}^{\infty}(-1)^{n}\left|a_{n}(z)\right|^{2}=1
$$

PT crystals not transparent, i.e. PT \nrightarrow unitarity is anything conserved?
more general intensity sum rules

$$
S \equiv \sum_{n=-\infty}^{\infty} S_{n}\left|a_{n}(z)\right|^{2}=1, \quad S_{n} \text { real }
$$

example $1 \mu(x)=2 \mathrm{i} \sum_{n=0}^{\infty} \mu_{\mathrm{a}, 2 n+1} \sin \{(2 n+1) x\} \quad \begin{gathered}\text { pure antihermitian PT } \\ \text { odd wrt } x=0 \text { and } x=\pi\end{gathered}$
alternating-sign

$$
S \equiv \sum_{n=-\infty}^{\infty}(-1)^{n}\left|a_{n}(z)\right|^{2}=1
$$

$$
I(z)=\sum_{n=-\infty}^{\infty}\left|a_{n}(z)\right|^{2}=1+2 \sum_{n=-\infty}^{\infty}\left|a_{2 n+1}(z)\right|^{2} \geq 1
$$

not transparent, gain dominates loss
example 2, interpolating between sum rules

$$
\begin{gathered}
\mu(x)=\mu_{1} \exp (\mathrm{i} x)+\mu_{-1} \exp (-\mathrm{i} x)=2 \mu_{\mathrm{h}} \cos x+2 \mathrm{i} \mu_{\mathrm{a}} \sin x \\
\text { (pure trigonometric) }
\end{gathered}
$$

example 2, interpolating between sum rules

$$
\begin{gathered}
\mu(x)=\mu_{1} \exp (\mathrm{i} x)+\mu_{-1} \exp (-\mathrm{i} x)=2 \mu_{\mathrm{h}} \cos x+2 \mu_{\mathrm{a}} \sin x \\
\text { (pure trigonometric) }
\end{gathered}
$$

i $\mu_{a}>0$, gain in $0<x<\pi$, loss in $-\pi<x<0$
example 2, interpolating between sum rules

$$
\begin{gathered}
\mu(x)=\mu_{1} \exp (\mathrm{i} x)+\mu_{-1} \exp (-\mathrm{i} x)=2 \mu_{\mathrm{h}} \cos x+2 \mu_{\mathrm{a}} \sin x \\
\text { (pure trigonometric) }
\end{gathered}
$$

i $\mu_{a}>0$, gain in $0<x<\pi$, loss in $-\pi<x<0$
sum rule $\sum_{n=-\infty}^{\infty}\left(\frac{\mu_{\mathrm{h} 1}-\mu_{\mathrm{a} 1}}{\mu_{\mathrm{h} 1}+\mu_{\mathrm{a} 1}}\right)^{n}\left|a_{n}(z)\right|^{2}=1$
example 2, interpolating between sum rules

$$
\begin{gathered}
\mu(x)=\mu_{1} \exp (\mathrm{i} x)+\mu_{-1} \exp (-\mathrm{i} x)=2 \mu_{\mathrm{h}} \cos x+2 \mu_{\mathrm{a}} \sin x \\
\text { (pure trigonometric) }
\end{gathered}
$$

i $\mu_{a}>0$, gain in $0<x<\pi$, loss in $-\pi<x<0$
sum rule $\sum_{n=-\infty}^{\infty}\left(\frac{\mu_{\mathrm{h} 1}-\mu_{\mathrm{a} 1}}{\mu_{\mathrm{h} 1}+\mu_{\mathrm{a} 1}}\right)^{n}\left|a_{n}(z)\right|^{2}=1$
limits

$$
\begin{aligned}
& \mu_{a 1} \rightarrow 0, \quad I(z)=\sum_{n=-\infty}^{\infty}\left|a_{n}(z)\right|^{2}=1 \\
& \mu_{h 1} \rightarrow 0, \quad S(z)=\sum_{n=-\infty}^{\infty}(-1)^{n}\left|a_{n}(z)\right|^{2}=1
\end{aligned}
$$

example 3: two-beam case, $\left|\mu_{h}\right| \ll 1, \quad\left|\mu_{a}\right| \ll 1$

example 3: two-beam case, $\left|\mu_{h}\right| \ll 1, \quad\left|\mu_{a}\right| \ll 1$

 intensity depends on balance of μ_{h} and μ_{a}
$\theta_{0}=-\frac{1}{2}+\delta$: deviation from Bragg angle

example 3: two-beam case, $\left|\mu_{h}\right| \ll 1, \quad\left|\mu_{a}\right| \ll 1$

 intensity depends on balance of μ_{h} and μ_{a}

$$
I(z)=1+\frac{2\left|a_{1}(z)\right|^{2} \mu_{a}}{\mu_{h}+\mu_{a}}
$$

$\theta_{0}=-\frac{1}{2}+\delta$: deviation from Bragg angle

example 3: two-beam case, $\left|\mu_{h}\right| \ll 1, \quad\left|\mu_{a}\right| \ll 1$

 intensity depends on balance of μ_{h} and μ_{a}

$$
I(z)=1+\frac{\left.2 \mid a_{1}(z)\right)^{2} \mu_{a}}{\mu_{h}+\mu_{a}}
$$

loss if $\frac{\mu_{a}}{\mu_{h}}<0$ and $\left|\mu_{a}\right|<\left|\mu_{h}\right|$
gain otherwise
$\theta_{0}=-\frac{1}{2}+\delta$: deviation from Bragg angle

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

z

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

$\mathrm{H}: \delta=0$,
$\mu_{h}=1, \mu_{a}=0$

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

$\mathrm{H}: \delta=0$,
$\mu_{h}=1, \mu_{a}=0$
PT loss : $\delta=0$,
$\mu_{h}=1, \mu_{a}=-0.5$

2

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

$\mathrm{H}: \delta=0$,
$\mu_{h}=1, \mu_{a}=0$
PT loss : $\delta=0$,
$\mu_{h}=1, \mu_{a}=-0.5$
PT gain : $\delta=0$,
$\mu_{h}=1, \mu_{a}=+0.5$

$$
\begin{aligned}
& I_{0}(z)=\left|a_{0}\right|^{2}=\cos ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)+\delta^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}} \\
& I_{1}(z)=\left|a_{1}\right|^{2}=\left(\mu_{h}+\mu_{a}\right)^{2} \frac{\sin ^{2}\left(z \sqrt{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}\right)}{\delta^{2}+\mu_{h}^{2}-\mu_{a}^{2}}
\end{aligned}
$$

$\mathrm{H}: \delta=0$,
$\mu_{h}=1, \mu_{a}=0$
PT loss : $\delta=0$,
$\mu_{h}=1, \mu_{a}=-0.5$
PT gain : $\delta=0$,
$\mu_{h}=1, \mu_{a}=+0.5$

NHD : $\delta=0$,
$\mu_{h}=0.5, \mu_{a}=0.5$

NHD case:

$$
\delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}
$$

NHD case: $\quad \delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{h}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{h}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

NHD case:
 $$
\delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}
$$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{h}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{h}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

NHD case:
 $$
\delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}
$$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{h}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{h}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

NHD case: $\quad \delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{n}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{n}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

as z increases, state rotates to become parallel to single NHD eigenstate of H

NHD case: $\quad \delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{h}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{h}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

as z increases, state rotates to become parallel to single NHD eigenstate of H
ghost of departed eigenvector

NHD case: $\quad \delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{n}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{i} z\left(\mu_{n}+\mu_{a}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

$$
\text { I(z)=1+2z2 } \mu_{a}\left(\mu_{a}+\mu_{h}\right)
$$

as z increases, state rotates to become parallel to single NHD eigenstate of H
ghost of departed eigenvector

$$
\binom{a_{0}(z)}{a_{1}(z)} \underset{z \rightarrow \infty}{\Rightarrow}\binom{\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}} z
$$

NHD case: $\quad \delta=\sqrt{\mu_{a}^{2}-\mu_{h}^{2}}$

$$
a_{0}(z)=\left(1+\mathrm{i} z \sqrt{\mu_{a}^{2}-\mu_{n}^{2}}\right) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right), \quad a_{1}(z)=-\mathrm{iz}\left(\mu_{h}+\mu_{a}\right) \exp \left(-\mathrm{iz} \sqrt{\delta^{2}+\frac{1}{4}}\right)
$$

as z increases, state rotates to become parallel to single NHD eigenstate of H
ghost of departed eigenvector
universal NH phenomenon, not restricted to PT

$$
\left.\begin{array}{l}
a_{0}(z) \\
a_{1}(z)
\end{array}\right) \underset{z \rightarrow \infty}{\Rightarrow \rightarrow \infty}\binom{\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}} z
$$

gain and loss symmetrical in $\mu(x)$, but net gain in emergent light
gain and loss symmetrical in $\mu(x)$, but net gain in emergent light

$$
\begin{aligned}
|\psi(x, z)|^{2} & =1+2 z^{2}\left(\mu_{h}+\mu_{a}\right)\left(\mu_{h}+\mu_{a}-\sqrt{\mu_{a}^{2}-\mu_{h}^{2}} \cos ^{2} x\right) \\
& +2 z\left(\mu_{h}+\mu_{a}\right) \sin x
\end{aligned}
$$

gain and loss symmetrical in $\mu(x)$, but net gain in emergent light

$$
\begin{aligned}
|\psi(x, z)|^{2} & =1+2 z^{2}\left(\mu_{h}+\mu_{a}\right)\left(\mu_{h}+\mu_{a}-\sqrt{\mu_{a}^{2}-\mu_{h}^{2}} \cos ^{2} x\right) \\
& +2 z\left(\mu _ { h } + \mu _ { a } \longdiv { \operatorname { s i n } x }\right)
\end{aligned}
$$

breaks symmetry between gain and loss
gain and loss symmetrical in $\mu(x)$, but net gain in emergent light

$$
\begin{aligned}
|\psi(x, z)|^{2}= & 1+2 z^{2}\left(\mu_{h}+\mu_{a}\right)\left(\mu_{h}+\mu_{a}-\sqrt{\mu_{a}^{2}-\mu_{h}^{2}} \cos ^{2} x\right) \\
& \left.+2 z\left(\mu_{h}+\mu_{a}\right) \sin x\right)
\end{aligned}
$$

breaks symmetry between gain and loss

wave concentrated in gain region

Pancharatnam 1955

?printea from "The Proceedings of the Indian Academy of Sciences",
 Vol. XLII, No. 2, Sec. A, 1955
 THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS - I. THEORETICAL

By S. Pancharatnam

```
Reprinted from "The Proceedings of the Indian Academy of Sciences",
    Vol. XLII, No. 5, Sec. A, }195
```

THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS
II. Experimental

By S. Pancharatnam

Pancharatnam 1955

$$
\begin{aligned}
& \text { ?printea jrom "The Proceedings of the Indian Academy of Sciences", } \\
& \text { Vol. XLII, No. 2, Sec. A, } 1955
\end{aligned}
$$

THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS - I. THEORETICAL

By S. Pancharatnam

Reprinted from "The Proceedings of the Indian Academy of Sciences",

 Vol. XLII, No. 5, Sec. A, 1955THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS
II. Experimental

By S. Pancharatnam
37pp
optical implication of single eigenvector at NHD

Pancharatnam 1955

?printea jrom "The Proceedings of the Indian Academy of Sciences",
Vol. XLII, No. 2, Sec. A, 1955

THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS - I. THEORETICAL

By S. Pancharatnam

Reprinted from "The Proceedings of the Indian Academy of Sciences",

 Vol. XLII, No. 5, Sec. A, 1955THE PROPAGATION OF LIGHT IN ABSORBING BIAXIAL CRYSTALS
II. Experimental

By S. Pancharatnam
37pp
optical implication of single eigenvector at NHD
in optics NHD= 'singular axis' in direction space
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
usually, two polarizations can propagate through an absorbing biaxially anisotropic crystal
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
usually, two polarizations can propagate through an absorbing biaxially anisotropic crystal
but at a singular axis (NHD), there is only one
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
usually, two polarizations can propagate through an absorbing biaxially anisotropic crystal
but at a singular axis (NHD), there is only one
what happens if a crystal is illuminated along a singular axis, with a beam of the orthogonal polarization - the one that doesn't propagate?
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
usually, two polarizations can propagate through an absorbing biaxially anisotropic crystal
but at a singular axis (NHD), there is only one
what happens if a crystal is illuminated along a singular axis, with a beam of the orthogonal polarization - the one that doesn't propagate?

Voigt 1908: the beam will be totally reflected
in optics, 2×2 dielectric matrix depending on direction, eigenvectors=polarization states
usually, two polarizations can propagate through an absorbing biaxially anisotropic crystal
but at a singular axis (NHD), there is only one
what happens if a crystal is illuminated along a singular axis, with a beam of the orthogonal polarization - the one that doesn't propagate?

Voigt 1908: the beam will be totally reflected
Pancharatnam 1955: wrong! - the polarization will slowly rotate into the one that does propagate

explicitly

$$
\begin{aligned}
& \binom{a_{0}(z)}{a_{1}(z)}=\exp (-A z) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right) \times \\
& {\left[\binom{\sqrt{\mu_{a}+\mu_{h}}}{\sqrt{\mu_{a}-\mu_{h}}}-2 \mathrm{i} \mu_{a}\binom{-\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}}\right]}
\end{aligned}
$$

explicitly

$$
\begin{aligned}
& \binom{a_{0}(z)}{a_{1}(z)}=\exp (-A z) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right) \times \\
& {\left[\binom{\sqrt{\mu_{a}+\mu_{h}}}{\sqrt{\mu_{a}-\mu_{h}}}-2 \mathrm{i} z \mu_{a}\binom{-\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}}\right]} \\
& \text { polarization that } \\
& \text { propagates }
\end{aligned}
$$

explicitly

$\left.\begin{array}{l}\left(\begin{array}{l}\binom{a_{0}(z)}{a_{1}(z)}=\exp (-A z) \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right) \times \\ \binom{\sqrt{\mu_{a}+\mu_{h}}}{\sqrt{\mu_{a}-\mu_{h}}}\end{array}-2 \mathrm{i} z \mu_{a}\binom{-\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}}\right.\end{array}\right] \begin{gathered}\text { orthogonal } \begin{array}{c}\text { polarization that } \\ \text { incident }\end{array} \\ \text { polarization }\end{gathered}$

explicitly

overall decay because crystal is absorbing: NH not PT, but the same degeneracy phenomenon

$$
\begin{array}{l}
\binom{a_{0}(z)}{a_{1}(z)}=\sqrt{\exp (-A z)} \exp \left(-\mathrm{i} z \sqrt{\delta^{2}+\frac{1}{4}}\right) \times \\
\binom{\sqrt{\mu_{a}+\mu_{h}}}{\sqrt{\mu_{a}-\mu_{h}}}
\end{array} \underbrace{-2 \mathrm{i} z \mu_{a}\binom{-\sqrt{\mu_{a}-\mu_{h}}}{\sqrt{\mu_{a}+\mu_{h}}}}]
$$

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light
with zero detuning, optical potential seen by atoms is proportional to $i \cos ^{2} x$

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light
with zero detuning, optical potential seen by atoms is proportional to $i \cos ^{2} x$

$$
\mathrm{i} \cos ^{2} x=\frac{1}{2} \mathrm{i}+\frac{1}{2} \mathrm{i} \sin 2 \xi \quad\left(\xi=x+\frac{1}{4} \pi\right)
$$

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light
with zero detuning, optical potential seen by atoms is proportional to $i \cos ^{2} x$

$$
\operatorname{icos}^{2} x=\frac{1}{2} \mathrm{i}+\frac{1}{2} \mathrm{i} \sin 2 \xi \quad\left(\xi=x+\frac{1}{4} \pi\right)
$$

nonuniform
loss

Pancharatnam's lossy crystal is an example of 'NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light
with zero detuning, optical potential seen by atoms is proportional to $i \cos ^{2} x$

$$
\operatorname{icos}^{2} x=\frac{1}{2} \mathrm{i}+\frac{1}{2} \mathrm{i} \sin 2 \xi \quad\left(\xi=x+\frac{1}{4} \pi\right)
$$

nonuniform uniform
loss loss

Pancharatnam's lossy crystal is an example of ' NH essentially PT', i.e. eigenvalues on a line parallel to the real axis: shifted to complex by absorption
another example: Zeilinger et al's (1996) atoms diffracted by light
with zero detuning, optical potential seen by atoms is proportional to $i \cos ^{2} x$

$$
\left.\begin{array}{c}
\operatorname{icos}^{2} x=\frac{1}{2} \mathrm{i}+\frac{1}{2} \mathrm{i} \sin 2 \xi \quad\left(\xi=x+\frac{1}{4} \pi\right) \\
\begin{array}{c}
\text { nonuniform } \\
\text { loss }
\end{array} \\
\begin{array}{c}
\text { uniform } \\
\text { loss }
\end{array}
\end{array} \begin{array}{c}
\text { PT, i.e. gain } \\
\text { balancing loss }
\end{array}\right)
$$

papers on NH \& PT

257 Berry, M V, 1994, Current Science, 67, 220-223, 'Pancharatnam, virtuoso of the Poincaré sphere: an appreciation'.
293 Berry, M V and O'Dell, D H J, 1998 'Diffraction by volume gratings with imaginary potentials' J.Phys.A 31 2093-2101.
294 Berry, M V, 1998 'Lop-sided diffraction by absorbing crystals' J.Phys.A 31 3493-3502.
324 Berry, M V and Dennis, M R, 2001 'Polarization singularities in isotropic random waves' Proc. R. Soc. A 457 141-155.
325 Bender, CM, Berry, M V, Meisinger, P M, Savage, V M and Simsek, M, 2001 'Complex WKB analysis of energylevel degeneracies of non-Hermitian Hamiltonians', J.Phys.A 34 L31-L36.
334 Berry, M V, Storm, C, and van Saarloos, W, 2001 'Theory of unstable laser modes: edge waves and fractality' Optics Commun. 197, 393-402.
336 Berry, M V, 2001 'Fractal modes of unstable lasers with polygonal and circular mirrors' Optics Communications 200 321-330.
345 Bender, C M, Berry, M V, Mandilara, A, 2002 'Generalized PT symmetry and real spectra', J.Phys.A 35 L467L471.
350 Berry, M V 2003, 'Mode degeneracies and the Peterman excess-noise factor for unstable lasers', Journal of Modern Optics 50, No 1, 63-81.
355 Berry, M V and Dennis, M R 2003 'The optical singularities of birefringent dichroic chiral crystals', Proc. R. Soc. A 459, 1261-1292.
361 Berry, M V and Dennis, M R, 2004 'Black polarization sandwiches are square roots of zero', J.Optics.A, 6, S24S25.
372 Berry, M V 2004 'Physics of nonhermitian degeneracies', Czech.J.Phys 54 1039-1047.
379 Berry MV 2005 'The optical singularities of bianisotropic crystals', Proc. R. Soc. A 461 2071-2098.
380 Ahmed, Zafar, Bender, Carl, M and Berry, M V 2005 'Reflectionless potentials and PT Symmetry', J.Phys.A 38 L627-L630.
392 Berry, M V \& Jeffrey, M R, 2006 'Conical diffraction complexified: dichroism and the transition to double refraction', J. Optics A, 8, 1043-1051.
406 Berry, M V 2008 'Optical lattices with PT symmetry are not transparent.' J. Phys. A 41, 244007.
441 Berry, M \& Uzdin, R 2011 'Slow nonhermitian cycling: exact solutions and the Stokes phenomenon', J. Phys. A 44435303 (26pp)
442 Berry, M V 2011 'Optical polarization evolution near a non-Hermitian degeneracy', J. Optics 13, 115701 (15pp)

